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• Rhombohedral space groups are notoriously difficult to deal with.

• Their symmetry properties are different from other crystals, and require 

special handling

• They account only for about 1% of all structures (according to CSD)

Let us just discard rhombohedral space groups! Programs 

will be easier to write and less buggy. And that 1% of 

structures? We have already solved about a milion 

structures, so who cares?

A revolutionary proposal



A revolutionary proposal

• Incommensurate structures are notoriously difficult to deal with.

• Their symmetry properties are different from other crystals, and require 

special handling

• They account only for about 1% of all structures (wild guess here)

Let us just discard incommensurate structures! Programs 

will be easier to write and less buggy. And that 1% of 

structures? We have already solved about a milion 

structures, so who cares?



Superspace at a glance
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Reciprocal space



Reciprocal space



1-101-101-101-10

-120-120-120-120 120120120120

Reciprocal space



1-101-10001-101-1000

-120-12000-120-12000 1201200012012000

1-101-10221-101-1022

1-101-10-3-31-101-10-3-3

-130-13011-130-13011

Reciprocal space



• When dealing with an incommensurately modulated structure we 

face four main challenges:

• Handling the diffraction pattern

• Handling the symmetry

• Computing the structure factor

• Computing structural properties (distances, angles...)

Common feature for all issues related to modulated structures: the use 

of superspace and work in more than 3 dimensions, but keeping in 

mind the relationship to 3D.



Diffraction pattern

3D

Properties:

- indices hkl

- diffraction vector   

h=ha*+kb*+lc*

- intensity I(h)

- structure factor F(h)

- d-spacing d=1/|h|

dmin uniquely determines a set of 

reflections within certain 

resolution sphere

4D

Properties:

- indices hklm

- diffraction vector 

h=ha*+kb*+lc*+mq

- intensity I(h)

- structure factor F(h)

- d-spacing d=1/|h|

dmin and mmax determine a set of 

reflections within certain 

resolution sphere



Symmetry

3D

3D symmetry operators:

space group G={Si}

transformation of a vector:

r‘=Rr+t.r

transformation of an atom

r‘=Rr+t.r

4D

4D symmetry operators:

space group G={Si}

transformation of a vector:

r‘=Rr+t.r

transformation of an atom

r=r0+u(x4)

r0‘=REr0+tE.r0

u‘(x4)=R3u(R44(x4-t4))

" #tR ,!S" #tR ,!S



General symmetry element: !
!
"

#
$
$
%

&
'
'

'
'
'

'
'
'

'
'
'

'
!

I

E

IM

E
S

t

t

RR

0R
,



General symmetry element: 

1. The 3D symmetry element as determined from the main reflections  
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General symmetry element: 

2. Internal space cannot be mixed up with external space

1. The 3D symmetry element as determined from the main reflections  
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General symmetry element: 

2. Internal space cannot be mixed up with external space

3. Form the metric properties $    MIE RqRqR !$

1. The 3D symmetry element as determined from the main reflections  
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General symmetry element: 

2. Internal space cannot be mixed up with external space

3. Form the metric properties $    

The only new information is the intrinsic part of the 4th component of the 

translation vector which, analogically to 3D symmetry, affects systematic 

absences of reflections. It expresses, how the modulation wave is shifted in the 

internal space. If tI is intrinsic, it can be determined from systematic absences.

1. The 3D symmetry element as determined from the main reflections  
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Systematic absences

3D

1) Determine the invariant 

reflections of the rotation 

matrix from the relationship

hinv=hinvR

2) The invariant reflections match 

the relationship

h.t=n

Example: c-glide perp. to b:

x1, x2, x3 $ x1, -x2, %+x3

hinv=(h,0,l); h.t = l/2 = n:

l=2n

4D

1) Determine the invariant reflections 

of the rotation matrix from the 

relationship

hinv=hinvR

2) The invariant reflections match 

the relationship

h.t=n

Example: c|s-glide perp. to b:

x1, x2, x3, x4 $ x1, -x2, %+x3, %+x4

hinv=(h,0,l, m); h.t = l/2 + m/2 = n:

l+m=2n



Systematic absences: l+m=2n

zero layer first layer



Structure factor

3D

Basic formula:

Integrating out the atomic 

densities:

4D

Basic formula:

Integrating out the atomic 

densities:
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Structure factor

For simple modulations (straight lines, 

harmonic modulation functions) 

analytical formulae exist. 

Various computing methods have been 

devised for fast calculation of the 

structure factor, but nowadays the 

„simple“ numerical integration (Gaussian 

quadrature) is used.

Poor man‘s solution: calculate superspace electron density on a 

regular grid, and get structure factors by FFT of the electron 

density 
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Some useful practical concepts

If you intend to make your program applicable to 3+n dimensions:

1)Do not fix the number of coordinates of your vectors to three. 
Make all vectors n-dimensional instead.

This brings two main problems:

a) constructs like this one are impossible:

DO h=hmin,hmax

  DO k=kmin,kmax

    DO l=lmin,lmax

       some clever math here

    ENDDO

        ENDDO

ENDDO



Some useful practical concepts

If you intend to make your program applicable to 3+n dimensions:

1)Do not fix the number of coordinates of your vectors to three. 

Make all vectors n-dimensional instead.

This brings two main problems:

a) instead you need:

setup starting and ending coordinates

DO

  CALL GiveMeNextIndices(hkl,IsLast)

  some clever math here

  IF (IsLast) EXIT

      ENDDO



Some useful practical concepts

If you intend to make your program applicable to 3+n dimensions:

1)Do not fix the number of coordinates of your vectors to three. 

Make all vectors n-dimensional instead.

This brings two main problems:

b) multidimensional arrays (like electron density) must be 

stored in one-dimensional array. You have to write functions for 

transforming the index of the 1D array to the multidimensional 

indices and vice versa.



Some useful practical concepts

If you intend to make your program applicable to 3+n dimensions:

2) Avoid tables, especially symmetry tables. Use matrix 

algebra instead:

- it is more elegant

- does not suffer from the problem of non-standard settings

- tables for higher dimensions are very difficult to assemble

- algebraic approach is less prone to typing errors



Some useful practical concepts

If you intend to make your program applicable to 3+n dimensions:

2)Avoid tables, especially symmetry tables. Use matrix algebra 

instead:

Symmetry operations compatible with the lattice and centering:

                              Symmetry operation             agreement factor

        n(0,1,0):        1/2+x1          -x2       1/2+x3    0.116    

        b(1,0,0):           -x1       1/2+x2           x3    0.184 

      2_1(0,0,1):           -x1          -x2       1/2+x3    0.237

      2_1(1,0,0):        1/2+x1          -x2          -x3   33.107

              -1:           -x1          -x2          -x3   33.207

        m(0,0,1):            x1           x2          -x3   75.603

      2_1(0,1,0):           -x1       1/2+x2          -x3   75.670

        m(0,1,0):            x1          -x2           x3   82.962

-------------------------------------------------

Space group derived from the symmetry operations:

-------------------------------------------------

    HM symbol:     Pbn21

    Hall symbol:   P 2c -2ab

    Fingerprint:   3300223}250qY2 (3/4,3/4,0)

    Symmetry operations:

               1:            x1           x2           x3

      2_1(0,0,1):           -x1          -x2       1/2+x3

        b(1,0,0):        1/2-x1       1/2+x2           x3

        n(0,1,0):        1/2+x1       1/2-x2       1/2+x3



Some useful practical concepts

If you intend to make your program aplicable to 3+n dimensions:

2)Avoid tables, especially symmetry tables. Use matrix algebra instead:

Symmetry operations compatible with the lattice and centering:

                              Symmetry operation             agreement factor

        n(0,1,0):        1/2+x1          -x2       1/2+x3    0.116    

        b(1,0,0):           -x1       1/2+x2           x3    0.184 

      2_1(0,0,1):           -x1          -x2       1/2+x3    0.237

      2_1(1,0,0):        1/2+x1          -x2          -x3   33.107

              -1:           -x1          -x2          -x3   33.207

        m(0,0,1):            x1           x2          -x3   75.603

      2_1(0,1,0):           -x1       1/2+x2          -x3   75.670

        m(0,1,0):            x1          -x2           x3   82.962

-------------------------------------------------

Space group derived from the symmetry operations:

-------------------------------------------------

    HM symbol:     Pbn21

    Hall symbol:   P 2c -2ab

    Fingerprint:   3300223}250qY2 (3/4,3/4,0)

    Symmetry operations:

               1:            x1           x2           x3

      2_1(0,0,1):           -x1          -x2       1/2+x3

        b(1,0,0):        1/2-x1       1/2+x2           x3

        n(0,1,0):        1/2+x1       1/2-x2       1/2+x3



Useful exercise

You may try to practice some of the superspace concepts by writing 

the following program:

Given a superspace group (as a list of one-line representations of R 

and t), produce a list of all systematically absent reflections 

within a given resolution sphere and given maximal satellite 

index.


