Scripting and automation of
existing crystallographic software

Santosh Panjikar
Australian Synchrotron

ECACOMSIG 2013 Santosh Panjikar

Automation in crystallography

e Automation ...
makes straightforward cases accessible to wider group
make difficult cases more flexible for expert
can speed up the process
can help reduce errors

* Automation also allows you to
Try more possibilities
Estimate uncertainties

ECACOMSIG 2013

Santosh Panjikar

Requirements for automation of structure
determination by X-ray crystallography

* Software carrying out individual steps
* Seamless connections between steps

* A way to decide what 1s good Strategies for
structure determination and decision-making

ECACOMSIG 2013 Santosh Panjikar

Objective

* How to run existing software from a script
 How to manage input and output
* How to bridge between existing programs.

* Examples and a discussion

ECACOMSIG 2013 Santosh Panjikar

Crystallographic Program

* Usually written 1n a Fortran or C
* Requires Command line argument

* Requires key parameters to run the program

ECACOMSIG 2013 Santosh Panjikar

Running program

#first way of getting the data and running

ec
eCl

eCl

o “first line of input” > instruct.txt

0 “second line of input” >> instruct.txt

0 “third line of input” >> instruct.txt

program name < instruct.txt

#Second way of getting the data and running
Program name << EOF

first line of 1nput
second line of mnput

third line of input
EOF

ECACOMSIG 2013

Santosh Panjikar

Necessary components for running
crystallographic program

Controller

ECACOMSIG 2013 Santosh Panjikar

Necessary components for running
crystallographic program

* Define the command line for the program
* Write a command script

* Execute the command to run program

ECACOMSIG 2013 Santosh Panjikar

Command line arguments/file connection

- input and output data files are connected as
specified by command line arguments, given
after the name of the program to be invoked

- parameters and option specifications are read

on the standard input stream
<program name> [<logical name> <file name>] ...

fft hklin native-refmac5.mtz mapout 2Fo-Fc.map << eof
Key mput -1
Key input-2

ECACOMSIG 2013 Santosh Panjikar

Keyworded input

* Most programs take 'keyworded' input to set their parameters.
keyword= argument parameter or
keyword argument parameter or
keyword, argument parameter
(The detail of the input expected can be found in the documentation for
cach program).

* Only the first four characters of keywords are significant (although you are
recommended to use complete keywords) and they are case-insensitive.

* Records may be continued across line breaks using &, - or \ as the last non-
blank, non-comment character on the line to be continued.

« Text following a non-quoted ! or # is treated as a comment and ignored. A
continuation character may precede the comment;

ECACOMSIG 2013 Santosh Panjikar

An example

truncate HKLIN junkl.mtz HKLOUT junk2.mtz << eof > truncate.log

Controller

TITLE

LABOUT F=FP SIGF=SIGFP DANO=DANO SIGDANO=SIGDANO —._
F(+)=F(+) SIGF(+)=SIGF(+) F(-)=F(-) SIGF(-)=SIGF(-)

NOHARVEST

RANGES 60

RESOLUTION 100 2.5

RSCALES.525 _

NRESIDUE 300 «

PLOT on

HEADER history

ANOMALQOUS yes

TRUNCATE yes

SYMMETRY P212121

CELL 30.00 40.00 50.00 90.00 90.00 90.00

\

END

eofCcOMSIG2043—— End of file

Continuation of line

Argument_parameter

Santosh Panjikar

An example

Controller

truncate HKLIN junkl.mtz HKLOUT junk2.mtz << eof > truncate.log

TITLE

LABOUT F=FP SIGF=SIGFP DANO=DANO SIGDANO=SIGDANO —
F(+)=F(+) SIGF(+)=SIGF(+) F(-)=F(-) SIGF(-)=SIGF(-)

NOHARVEST

RANGES 60

RESOLUTION 100 2.5

RSCALE 5.5 2.5

NRESIDUE 300

PLOT on

HEADER history

ANOMALQOUS yes

TRUNCATE yes

SYMMETRY P212121

CELL 30.00 40.00 50.00 90.00 90.00 90.00

END

EQECOMSIG 2013

Santosh Panjikar

Setting up variables

set highres = 2.5
set residue = 300

set cell =“30.00 40.00 50.00 90.00 90.00 90.00”
set spacegroup = P212121

Controller

truncate HKLIN junkl.mtz HKLOUT junk2.mtz << eof > truncate.log
TITLE

LABOUT F=FP SIGF=SIGFP DANO=DANO SIGDANO=SIGDANO -
F(+)=F(+) SIGF(+)=SIGF(+) F(-)=F(-) SIGF(-)=SIGF(-)
NOHARVEST

RANGES 60

RESOLUTION 100 S{highres}

RSCALE 5.5 S{highres}

NRESIDUE Sresidue

PLOT on

HEADER history

ANOMALQOUS yes

TRUNCATE yes

SYMMETRY Sspacegroup

CELL Sunitcell

ND

EGACOMSIG 2013 Santosh Panjikar

Passing values to the script

set highres = S1

set residue = S2

set cell =S3

set spacegroup = $4

truncate HKLIN junkl.mtz HKLOUT junk2.mtz << eof > truncate.log

T[TLE

LABOUT F=FP SIGF=SIGFP DANO=DANO SIGDANO=SIGDANO —
F(+)=F(+) SIGF(+)=SIGF(+) F(-)=F(-) SIGF(-)=SIGF(-)

NOHARVEST

RANGES 60

RESOLUTION 100 ${highres}

RSCALE 5.5 S{highres}

NRESIDUE Sresidue

PLOT on

HEADER history

ANOMALOUS yes

TRUNCATE yes

SYMMETRY Sspacegroup

CELL Sunitcell

END

ecfcomsIG 2013

Controller

e Save the script as a file
called “truncate.com”

* make it executable (chmod

+x truncate.com)

* csh truncate com 2.5 300

“30.00 40.00 50.00 90.00

90.00 90.00” P212121

Santosh Panjikar

Passing values to the script

csh truncate.com 2.5 300 “30.00 40.00 50.00 90.00 90.00 90.00” P212121

cshell $1 2 S3 S4

Script name

Unit cell Space group

resolution Number of residues in
asymmetric unit

ECACOMSIG 2013 Santosh Panjikar

Scripting

Scripting 1s a way of telling the computer what
to do. However, computer can only understand
commands to do things i1f you tell the exactly
what to do 1n a specific code or language.

ECACOMSIG 2013 Santosh Panjikar

Scripting Language

A scripting language 1s a programming
language that supports the writing of scripts,
programs written for a software environment
that automate the execution of tasks which
could alternatively be executed one-by-one by
a human operator.

ECACOMSIG 2013 Santosh Panjikar

Scripting language

ECACOMSIG 2013 Santosh Panjikar

Shell scripts

- The first scripting languages date back to the 1960s. The
language was referred to as "job control languages". They
were just simple sets of commands, executed to save the
human operator the need to enter all of them manually. These
files soon developed into "shell scripts". Shell scripts are a
collection of commands for the shell, also known as the
command line of an operating system.

* Shell scripts are typically used for file manipulations,
program execution and text printing.

ECACOMSIG 2013 Santosh Panjikar

Writing scripts

* Use editor to write script
Emacs, vi, nedit, gedit, pico and nano

* Scripts need to be written in as “plain
text” (ASCII text)

ECACOMSIG 2013 Santosh Panjikar

Writing scripts

“Hello World” shell script
#!/bin/csh —f

#

#This 1s a comment

#

echo “hello world”

Save the shell script as “hello_world.csh”
In order to make to runnable or executable

chmod +x hello world.csh

ECACOMSIG 2013 Santosh Panjikar

Simple C shell syntax for making decision

1f (expression) then while (expression) then

List are enclosed with
parantheses: (abcd e f)

ECACOMSIG 2013 Santosh Panjikar

Simple C shell syntax for moving from one
part to other part of the script

part of script -A
goto B2

D4:

#program script-D4
Cl:
#program script —Cl1
#logic
goto D4
B2:

D4 #program script-B2
#logic

goto Cl1

ECACOMSIG 2013 Santosh Panjikar

Extending the script

* Prepare script for each program

* Determine number of parameters for individual program those change
* Set variable for each changing parameter

* Run the program

* Evaluate the output

 Some parameter values can be extracted for the next program from output
of the previous program and pass to the next program in the script

Bl Bl

Passing variable parameters and input files to next program

ECACOMSIG 2013

Santosh Panjikar

Controller

Adjoiner

ECACOMSIG 2013

Controller

>

Controller

Controller

Santosh Panjikar

A stmple example on

linking crystallographic software
 We will choose, SHELXC, SHELXD and SHELXE for

solving crystal structure from intensity data for phasing
method SAD, 2W-MAD and 3W-MAD.

* For this we need to understand what are the input
parameters for individual program for various phasing
method.

* To run SHELX program: its logical flow 1s
SHELXC - SHELXD - SHELXE

* The flow needs to be prepared for each phasing method.

ECACOMSIG 2013 Santosh Panjikar

SHELXC, SHELXD and SHELXE

 SHELXC prepares input for SHELXD and SHELXE
Files generated by SHELXC are with prefix:
hkl, fa.hkl and fa.ins

« SHELXD uses fa.hkl (anomalous difference or FA) and
_fa.ns (a mstruction file) and produces

_fa.res (fractional heavy atom co-ordinate) and
_fa.pdb (Cartesian heavy atom co-ordinate)

« SHELXE uses .hkl, fa.hkl, fa.insand {fa.res

ECACOMSIG2013 . santos h Panjikar

SHELXC

SAD 2W-MAD 3W-MAD
shelxc $SPROJECT << eof | | shelxc SPROJECT << shelxc SPROJECT <<
SAD $4 eof eof
CELL S$unitcell PEAK $4 PEAK $4
SPAG $SPAG INFL $5 INFL $5
FIND $HATOMS CELL S$unitcell HREM $6
NTRY 100 SPAG $SPAG CELL Sunitcell
eof FIND SHATOMS SPAG $SPAG

NTRY 100 FIND $HATOMS
cof NTRY 100
eof

Common Keyword for each phasing protocol are CELL, SPAG, FIND and NTRY. Hence: we will
set the parameters value for each keyword and input for the keword SAD, PEAK, INFL, HREM
requires intensity data, we will take input from command line of the script.

set PROJECT = my # define this name as your choice

set unitcell = # this can be extracted from intensity file (third line of scalepack format)

set SPAG = # this is keyword for space group , needs to be given

set HATOMS = # this is keyword for number of heavy atoms to search, needs to be given

ECACOMSIG 2013 Santosh Panjikar

SHELXC

SAD 2W-MAD 3W-MAD
shelxc $SPROJECT << eof | | shelxc $PROJECT << shelxc SPROJECT <<
SAD $4 eof eof
CELL S$unitcell PEAK $4 PEAK $4
SPAG $SPAG INFL $5 INFL $5
FIND $HATOMS CELL S$unitcell HREM $6
NTRY 100 SPAG $SPAG CELL S$unitcell
eof FIND SHATOMS SPAG $SPAG

NTRY 100 FIND $HATOMS
eof NTRY 100
cof

set PROJECT = my # define this name as your choice
set method= $1 # choose SAD, 2W-MAD or 3W-MAD
set SPAG = $2 # this is keyword for space group , needs to be given from command line
set HATOMS = $3 # this is keyword for no. of heavy atoms to search, needs to be given
set unitcell = ‘head -3 $4 | tail -1 | awk '{ print $1, $2, $3, $4, $5, $6}"

this can be extracted from intensity file (third line of scalepack format)

$4, $5, $6 (intensity data) will be taken from script command line input
ECACOMSIG 2013

Santosh Panjikar

SHELXD and SHELXE

e Torun SHELXD:

shelxd my fa
/ \

Program executable First letters are project name
and reads my_fa.hkl and
my fa.ins

e Torun SHELXE:

shelxe my my fa —s0.50 -m20 —a4 —q —t2
/)

Program executable -s keyword for -m keyword for
solvent content number of cycle
. . -a keyword for
First letters are project name number of
and reads my.hkl building cycle

ECACOMSIG 2013 Santosh Panjikar

Automation design for SHELXC/D/E for
SAD/2W-MAD/3W-MAD

 SHELXD and SHELXE does not usually require change in
the imput parameters as the input 1s going to be similar for
any phasing method we choose. [Though input parameters
may be changed 1n difficult cases. Here we like to keep it
simple]

 SHELXC 1nputs will be required to design for each phasing
method and then we can pass it to the next step (SHELXD).

* We will need to make decision on the hand of heavy atom
sites at the SHELXE step to ensure original or inverse hand
1s correct.

* Once correct hand is determined, we can pass it to SHELXE
density modification and model building step.

ECACOMSIG 2013 Santosh Panjikar

Flow chart for the automated script

SHELXC

SAD

In general important consideration
1. Write individual script for each program
and for each phasing method.
L 2. Determine keyword parameters to
SHELXD Determina)
e supply the script.
3. Judge which parameters you can make
decision to go to the next step
4. Analysis of the output files
5. Sensible error handling message

SHELXE
Model
buiding

ECACOMSIG 2013 Santosh Panjikar

Tutorial

A basic script and test datasets will be supplied to you that
would contain the work flow for SAD/2W-MAD/3W-MAD
datasets. It will use SHELXC/D/E as external program. We will
go through the logic.

Your task

1. Run the script using any phasing method (SAD, 2W-MAD or 3W-
MAD) and the provided datasets.

2. Extend the script in order to add 4W-MAD phasing protocol and
add error handing message when correct number of datasets are
not provided. Finally run the protocol.

If you still have time, try following:
3. Terminate SHELXD automatically as soon it finds solution.

4. If SHELXD fails to find solution, add resolution cut-off parameter
at the SHELXC step or .ins files so that SHELXD takes further
attempt to solve the substructure at lower resolution.

Thank You

ECACOMSIG 2013 Santosh Panjikar

